Indefinite integration | Practice Question | Maths Question | IIT JEE | NDA | AIRFORCE X | SAT | CBSE 16-30
Indefinite integration
Question no. 16
What is ∫ sin-1x + cos-1x dx is equal to ?
looks_one 0.5πx + c
looks_two x(sin-1x + cos-1x) + c
looks_3 x(sin-1x - cos-1x) + c
looks_3 π/2 + x + c
Option looks_one 0.5πx + c
Solution :
∫ sin-1x + cos-1x dx
∫ π/2 dx
0.5πx + c
∫ sin-1x + cos-1x dx
∫ π/2 dx
0.5πx + c
Question no. 17
What is ∫ (x-1)/(x+1)2 dx equal to ?
looks_one log(x+1) + 2/(x+1) +c
looks_two log(x+1) - 2/(x+1) +c
looks_3 -log(x+1) + 2/(x+1) +c
looks_4 none of these
Option looks_one log(x+1) + 2/(x+1) +c
Solution :
∫ (x-1)/(x+1)2 dx
x + 1 = t ⇒ x = t -1 ⇒ dx = dt
∫ (t-2)/t2 dt
∫ 1/t - 2/t2 dt
log t + 2/t + c
log(x+1) + 2/(x+1) +c
∫ (x-1)/(x+1)2 dx
x + 1 = t ⇒ x = t -1 ⇒ dx = dt
∫ (t-2)/t2 dt
∫ 1/t - 2/t2 dt
log t + 2/t + c
log(x+1) + 2/(x+1) +c
Question no. 18
What is ∫ (1+ 2x +3x2 +4x3...........) dx equal to ?
looks_one (1+x)-1 + c
looks_two (1-x)-1 + c
looks_3 (1-x)-1 -1 + c
looks_4 none of these
Option looks_two (1-x)-1 + c
Solution :
(1+ 2x +3x2 +4x3...........) = (1-x)-2
∫ (1+ 2x +3x2 +4x3...........) dx = ∫ (1-x)-2 dx
∫ (1-x)-2 = (1-x)-1 + c
(1+ 2x +3x2 +4x3...........) = (1-x)-2
∫ (1+ 2x +3x2 +4x3...........) dx = ∫ (1-x)-2 dx
∫ (1-x)-2 = (1-x)-1 + c
Question no. 19
What is ∫ sin-1(cosx)dx equal to ?
looks_one xπ/2 - x2/2 + k
looks_two xπ/2 + x2/2 + k
looks_3 -xπ/2 - x2/2 + k
looks_4 π/2 - x2/2 + k
Option looks_one xπ/2 - x2/2 + k
Solution :
∫ sin-1(cosx)dx
∫ sin-1(sin (π/2 - x))dx
∫ π/2 - x dx
xπ/2 - x2/2 + k
∫ sin-1(cosx)dx
∫ sin-1(sin (π/2 - x))dx
∫ π/2 - x dx
xπ/2 - x2/2 + k
Question no. 20
What is ∫ sin√x /√x dx equal to ?
looks_one 0.5cos√x + c
looks_two cos√x + c
looks_3 -0.5cos√x + c
looks_4 2cos√x + c
Option looks_4 2cos√x + c
Solution :
∫ sin√x /√x dx
√x = t
dx = 2√xdt
2 ∫ sint dt
2 cos t + c
2cos√x + c
∫ sin√x /√x dx
√x = t
dx = 2√xdt
2 ∫ sint dt
2 cos t + c
2cos√x + c
Question no. 21
What is ∫ exsinx dx equal to ?
looks_one ex(sinx +cosx) + c
looks_two ex(sinx - cosx) + c
looks_3 0.5ex(sinx +cosx) + c
looks_4 0.5ex(sinx -cosx) + c
Option looks_4 0.5ex(sinx -cosx) + c
Solution :
∫ exsinx dx
Integrate By parts
∫ exsinx dx = exsinx - ∫ excosx dx
∫ exsinx dx = exsinx - excosx - ∫ exsinx dx
2 ∫ exsinx dx = exsinx - excosx
∫ exsinx dx = 0.5ex(sinx -cosx) + c
∫ exsinx dx
Integrate By parts
∫ exsinx dx = exsinx - ∫ excosx dx
∫ exsinx dx = exsinx - excosx - ∫ exsinx dx
2 ∫ exsinx dx = exsinx - excosx
∫ exsinx dx = 0.5ex(sinx -cosx) + c
Question no. 22
What is ∫ x sinkx dx equal to ?
looks_one (1/k)sinkx + c
looks_two (1/k)coskx +c
looks_3 (1/k)sinx + c
looks_4 none of these
Option looks_4 none of these
Solution :
∫ x sinkx dx
kx = t ⇒ dx = dt/k
(1/k2) ∫ t sin t dt dt
(1/k2) [-tcost + sint ] = (1/k2)[-kxcoskt + sinkt]
∫ x sinkx dx
kx = t ⇒ dx = dt/k
(1/k2) ∫ t sin t dt dt
(1/k2) [-tcost + sint ] = (1/k2)[-kxcoskt + sinkt]
Question no. 23
What is ∫ xex dx equal to ?
looks_one (x+1)ex + c
looks_two xex - 1+ c
looks_3 xex + 1+ c
looks_4 (x-1)ex + c
Option looks_4 (x-1)ex + c
Solution :
∫ xex dx
xex - ∫ ex dx
xex - ex + c
(x-1)ex + c
∫ xex dx
xex - ∫ ex dx
xex - ex + c
(x-1)ex + c
Question no. 24
If ∫xe2x dx = e2xf(x) + c , then f(x) is
looks_one (3x-1)/4
looks_two (2x+1)/2
looks_3 (2x-1)/4
looks_4 (x-4)/6
Option looks_3 (2x-1)/4
Solution :
∫xe2x dx
Integrate by parts
(1/2)xe2x - (1/2)∫e2x dx
(1/2)xe2x - (1/4)e2x + C
(2x-1)e2x/4 + C
f(x) = (2x-1)/4
∫xe2x dx
Integrate by parts
(1/2)xe2x - (1/2)∫e2x dx
(1/2)xe2x - (1/4)e2x + C
(2x-1)e2x/4 + C
f(x) = (2x-1)/4
Question no. 25
What is ∫ 1/(x+1)(x+2) dx equal to ?
looks_one log(x+2)/(x+1) +c
looks_two log(x+2)(x+1) +c
looks_3 log(x+1)/(x+2) +c
looks_4 none of these
Option looks_3 log(x+1)/(x+2) +c
Solution :
∫ 1/(x+1)(x+2) dx
∫ 1/(x+1) - 1/(x+2) dx
log(x+1) - log(x+2) + c
log(x+1)/(x+2) +c
∫ 1/(x+1)(x+2) dx
∫ 1/(x+1) - 1/(x+2) dx
log(x+1) - log(x+2) + c
log(x+1)/(x+2) +c
Question no. 26
What is ∫ 1/(x-x3) dx equal to ?
looks_one 0.5log(1- x2)/x2 + c
looks_two log(1- x)/(1+x)x + c
looks_3 logx(1- x2) + c
looks_4 0.5log x2/(1-x2) + c
option looks_4 0.5log x2/(1-x2) + c
Solution :


Question no. 27
What is ∫ 1/(ex +e-x)2 dx equal to ?
looks_one -1/2(e2x +1) + c
looks_two 1/2(e2x +1) + c
looks_3 1/(e2x +1) + c
looks_4 none of these
Option looks_one -1/2(e2x +1) + c
Solution :


Question no. 28
What is ∫ cos3x elogsinx dx equal to ?
looks_one -(1/4)sin4x + c
looks_two (1/4)cos4x + c
looks_3 (1/4)esinx + c
looks_4 none of these
Option looks_4 none of these
Solution :
∫ cos3x elogsinx dx
∫ cos3x sinx dx
sinx = t ⇒ cosx dx = dt
∫ cos2x t dt
∫ (1 -t2)t dt
∫ t - t3 dt = t2/2 - t4/4 + c
(1/2)sin2x - (1/4)sin4x + c
∫ cos3x elogsinx dx
∫ cos3x sinx dx
sinx = t ⇒ cosx dx = dt
∫ cos2x t dt
∫ (1 -t2)t dt
∫ t - t3 dt = t2/2 - t4/4 + c
(1/2)sin2x - (1/4)sin4x + c
Question no. 29
What is ∫ tan(3x-5)sec(3x-5) dx equal to ?
looks_one sec(3x-5) + c
looks_two (1/3)sec(3x-5) + c
looks_3 tan(3x-5)+ c
looks_4 none of these
Option looks_two (1/3)sec(3x-5) + c
Solution :
∫ tan(3x-5)sec(3x-5) dx
3x-5 = t ⇒ 3dx = dt
(1/3) ∫ tan(t)sec(t) dt
(1/3){sect} + c
(1/3)sec(3x-5) + c
∫ tan(3x-5)sec(3x-5) dx
3x-5 = t ⇒ 3dx = dt
(1/3) ∫ tan(t)sec(t) dt
(1/3){sect} + c
(1/3)sec(3x-5) + c
Question no. 30
What is ∫ (1 + x + x2/2! + x3/3! + ...........)dx equal to ?
looks_one -ex + c
looks_two ex + c
looks_3 e-x +c
looks_4 none of these
Option looks_two ex + c
Solution :
ex = 1 + x + x2/2! + x3/3! + ...........
∫ (1 + x + x2/2! + x3/3! + ...........) = ∫ ex dx
∫ ex dx = ex + c
ex = 1 + x + x2/2! + x3/3! + ...........
∫ (1 + x + x2/2! + x3/3! + ...........) = ∫ ex dx
∫ ex dx = ex + c
Comments
Post a Comment