
Indefinite integration
Question no. 1
What is ∫ log(x+1) dx is equal to ?
looks_one xlog(x+1) -x + c
looks_two (x+1)log(x+1) -x + c
looks_3 1/(x+1) + c
looks_4 log(x+1)/(x+1) + c
Option looks_two (x+1)log(x+1) -x + c
Solution :
∫ log(x+1) dx
Integrate By parts
∫ log(x+1) dx
Integrate By parts
Question no. 2
If ∫ dx/f(x) = log {f(x)}2 +c , then what is f(x) equal to ?
looks_one 2x +b
looks_two x+b
looks_3 x/2 + b
looks_4 x2 + b
Option looks_3 x/2 + b
Solution :
∫ dx/f(x) = log {f(x)}2 + c
∫ dx/f(x) = log {f(x)}2 + c
Question no. 3
What is ∫ (e-x +1 )-1 dx equal to ?
looks_one ln(ex +1) + c
looks_two ln(e-x +1) + c
looks_3 -ln(e-x +1) + c
looks_4 -(ex +1) + c
Option looks_one ln(ex +1) + c
Solution :
∫ (e-x +1 )-1 dx
∫ (e-x +1 )-1 dx
Question no. 4
What is ∫ 1/(sin2θ +2cos2θ -1) dθ equal to ?
looks_one tanθ + c
looks_two cotθ + c
looks_3 0.5tanθ + c
looks_4 0.5cotθ + c
Option looks_one tanθ + c
Solution :
Question no. 5
What is ∫ tan2xsec4x dx equal to ?
looks_one (1/5)sec5x + (1/3)sec3x + c
looks_two (1/5)tan5x + (1/3)tan3x + c
looks_3 (1/5)tan5x + (1/3)sec3x + c
looks_4 (1/5)sec5x + (1/3)tan3x + c
Option looks_two (1/5)tan5x + (1/3)tan3x + c
Solution :
∫ tan2xsec4x dx
tan x = t
sec2x dx = dt
∫ tan2xsec4x dx = ∫ t2sec4x dt/sec2x
∫ t2sec2x dt = ∫ t2( 1 + tan2x) dt
∫ t2( 1 + t2) dt = ∫ t2 + t4 dt
t3/3 + t5/5 + C
(1/5)tan5x + (1/3)tan3x + c
∫ tan2xsec4x dx
tan x = t
sec2x dx = dt
∫ tan2xsec4x dx = ∫ t2sec4x dt/sec2x
∫ t2sec2x dt = ∫ t2( 1 + tan2x) dt
∫ t2( 1 + t2) dt = ∫ t2 + t4 dt
t3/3 + t5/5 + C
(1/5)tan5x + (1/3)tan3x + c
Question no. 6
What is ∫ (a+bsinx)/cos2x dx equal to ?
looks_one asecx +btanx + c
looks_two atanx + bsecx+ c
looks_3 acotx + bcosecx + c
looks_4 acosecx + bcotx + c
Option looks_two atanx + bsecx+ c
Solution :
Question no. 7
What is ∫ (logx)/(1+logx)2 dx equal to ?
looks_one 1/(1+logx)3 + c
looks_two 1/(1+logx)2 +c
looks_3 x/(1+logx) +c
looks_4 x/(1+logx)2 +c
Option looks_3 x/(1+logx) +c
Solution :
∫ (logx)/(1+logx)2 dx
Let 1 + logx = t ⇒ x = et-1
(1/x)dx = dt
dx = xdt
∫ (logx)/(1+logx)2 dx
Let 1 + logx = t ⇒ x = et-1
(1/x)dx = dt
dx = xdt
Question no. 8
What is ∫ elnxsinx dx equal to ?
looks_one elnx(sinx - cosx) + c
looks_two sinx - xcosx + c
looks_3 xsinx + cosx + c
looks_4 sinx + xcosx + c
Option looks_two sinx - xcosx + c
Solution :
∫ elnxsinx dx = ∫ x sinx dx
-xcosx + ∫ cosx dx
-xcosx + sinx + c
∫ elnxsinx dx = ∫ x sinx dx
-xcosx + ∫ cosx dx
-xcosx + sinx + c
Question no. 9
If ∫x2lnx dx = x3lnx/m + x3/n + c , then what are the values of m and n respectively?
looks_one 1/3 , -1/9
looks_two 3,-9
looks_3 3,9
looks_4 3,3
Option looks_two 3,-9
Solution :
∫x2lnx dx
x3lnx/3 - ∫x3/3x dx
x3lnx/3 - x3/9 + c
m = 3 , n = -9
∫x2lnx dx
x3lnx/3 - ∫x3/3x dx
x3lnx/3 - x3/9 + c
m = 3 , n = -9
Question no. 10
What is ∫ 1/(1+ex) dx equal to ?
looks_one x-logx +c
looks_two x-log(tanx) +c
looks_3 x- log(1+ ex) + c
looks_4 log(1+ ex) + c
Option looks_3 x- log(1+ ex) + c
Solution :
Question no. 11
What is ∫ √x e√x dx equal to ?
looks_one 2e√x( x-2√x + 2 ) + c
looks_two 2e√x( x + 2√x + 2 ) + c
looks_3 2e√x( x + 2√x - 2 ) + c
looks_4 2e√x( x-2√x - 2 ) + c
Option looks_one 2e√x( x-2√x + 2 ) + c
Solution :
∫ √x e√x dx
√x = t
dx = 2√xdt
∫ √x e√x dx = 2 ∫ x et dt = 2 ∫ t2 et dt
Integrate By parts
2 t2 et - 2 ∫2tet dt
2 t2 et -4tet + 4et + c
put t = √x
2e√x( x-2√x + 2 ) + c
∫ √x e√x dx
√x = t
dx = 2√xdt
∫ √x e√x dx = 2 ∫ x et dt = 2 ∫ t2 et dt
Integrate By parts
2 t2 et - 2 ∫2tet dt
2 t2 et -4tet + 4et + c
put t = √x
2e√x( x-2√x + 2 ) + c
Question no. 12
What is ∫ secnxtanx dx equal to ?
looks_one (1/n)secnx + c
looks_two (1/(n-1))secn-1x + c
looks_3 (1/n)tannx + c
looks_4 (1/(n-1))tann-1x + c
Option looks_one (1/n)secnx + c
Solution :
∫ secnxtanx dx
sec x = t
sec x tan x dx = dt
∫ secn-1x dt = ∫ tn-1 dt
∫ tn-1 dt = tn/n + C = (1/n)secnx + C
∫ secnxtanx dx
sec x = t
sec x tan x dx = dt
∫ secn-1x dt = ∫ tn-1 dt
∫ tn-1 dt = tn/n + C = (1/n)secnx + C
Question no. 13
What is ∫ 1/(xlnx) dx equal to ?
looks_one ln(lnx) + c
looks_two lnx + c
looks_3 (lnx)2 + c
looks_4 none of these
Option looks_one ln(lnx) + c
Solution :


Question no. 14
What is ∫ elnx dx equal to ?
looks_one xelnx + c
looks_two -xelnx + c
looks_3 x+ c
looks_4 x2/2 + c
Option looks_3 x+ c
Solution :
∫ elnx dx = ∫ 1 dx = x +c
∫ elnx dx = x + c
∫ elnx dx = ∫ 1 dx = x +c
∫ elnx dx = x + c
Question no. 15
What is ∫ lnx/x dx equal to ?
looks_one (lnx)2/2 + c
looks_two lnx/ 2 + c
looks_3 (lnx)2 +c
looks_4 none of these
Option looks_one (lnx)2/2 + c
Solution :
∫ lnx/x dx
Integrate By parts
∫ lnx/x dx
Integrate By parts
Comments
Post a Comment