Practice Question On Indefinite integration For NDA , Airforce and IITJEE | 31-45 | CBSE | SAT | COOP
Indefinite integration
Question no. 31
What is ∫ x/(1-xcotx) dx is equal to ?
looks_one log(cosx- xsinx) + c
looks_two log(xsinx-cosx) + c
looks_3 log(sinx - xcosx) + c
looks_4 none of these
Option looks_3 log(sinx - xcosx) + c
Solution :
log(sinx - xcosx) + c
log(sinx - xcosx) + c
Question no. 32
What is ∫ (x-2)/(x2-4x+3) dx equal to ?
looks_one log√(x2-4x+3) + c
looks_two xlog(x-3) - 2log(x-2) +c
looks_3 log(x-3)(x-1) +c
looks_4 none of these
option looks_one log√(x2-4x+3) + c
Solution :
∫ (x-2)/(x2-4x+3) dx
Let x2-4x+3 = t
Differentiate w.r.t x
(2x-4)dx = dt
Put the value of dx in following integration
∫ 1/2t dt
(1/2)log(t) + c
log(t)1/2 + c
log(x2-4x+3)1/2 + c
∫ (x-2)/(x2-4x+3) dx
Let x2-4x+3 = t
Differentiate w.r.t x
(2x-4)dx = dt
Put the value of dx in following integration
∫ 1/2t dt
(1/2)log(t) + c
log(t)1/2 + c
log(x2-4x+3)1/2 + c
Question no. 33
What is ∫ 3x2/(x6 +1) dx equal to ?
looks_one log(1+x6) + c
looks_two tan-1(x3) + c
looks_3 3tan-1(x3) + c
looks_4 3tan-1(x3/3) + c
Option looks_two tan-1(x3) + c
Solution :
∫ 3x2/(x6 +1) dx
let x3 = t
Differentiate w.r.t x
3x2 dx = dt
Put the value of dx in following integration
∫ 1/(t2 + 1) dt
tan-1(t) + c
tan-1(x3) + c
∫ 3x2/(x6 +1) dx
let x3 = t
Differentiate w.r.t x
3x2 dx = dt
Put the value of dx in following integration
∫ 1/(t2 + 1) dt
tan-1(t) + c
tan-1(x3) + c
Question no. 34
What is ∫ 1/(ex-1) dx equal to ?
looks_one ln(1 - e-x) + k
looks_two -ln(1 - e-x) + k
looks_3 ln(ex-1) + k
looks_4 none of these + k
Option looks_one ln(1 - e-x) + k
Solution :
∫ 1/(ex-1) dx
let ex-1 = t
Differentiate w.r.t x
ex dx = dt
∫ 1/t(ex) dt
∫ 1/t(t+1) dt = ∫ 1/t - 1/(t+1) dt
ln(t) -ln(t+1) + c
ln(ex-1) - ln(ex) + c
ln((ex-1)/ex) + c
ln(1 - e-x) + c
∫ 1/(ex-1) dx
let ex-1 = t
Differentiate w.r.t x
ex dx = dt
∫ 1/t(ex) dt
∫ 1/t(t+1) dt = ∫ 1/t - 1/(t+1) dt
ln(t) -ln(t+1) + c
ln(ex-1) - ln(ex) + c
ln((ex-1)/ex) + c
ln(1 - e-x) + c
Question no. 35
What is ∫ cos√x /√x dx equal to ?
looks_one 0.5cos√x + c
looks_two 2cos√x + c
looks_3 sin√x + c
looks_4 2sin√x + c
Option looks_4 2sin√x + c
Solution :
∫ cos√x /√x dx
√x = t
Differentiate w.r.t x
dx = 2√xdt
dx = 2t dt
∫ (2t/t)cost dt = ∫ 2cost dt
2sint + c
2sin√x + c
∫ cos√x /√x dx
√x = t
Differentiate w.r.t x
dx = 2√xdt
dx = 2t dt
∫ (2t/t)cost dt = ∫ 2cost dt
2sint + c
2sin√x + c
Question no. 36
What is ∫ cos2x/(sinx+cosx)2 dx equal to ?
looks_one log√(sinx+cosx) + c
looks_two log(sinx - cosx) + c
looks_3 log(sinx + cosx) + c
looks_4 -1/(sinx+cosx) + c
option looks_3 log(sinx + cosx) + c
Solution :
let sinx + cosx = t
differentiate w.r.t x
(cosx -sinx )dx =dt
∫ 1/t dt
log(t) + c
log(sinx + cosx) + c
let sinx + cosx = t
differentiate w.r.t x
(cosx -sinx )dx =dt
∫ 1/t dt
log(t) + c
log(sinx + cosx) + c
Question no. 37
What is ∫ x cosx dx equal to ?
looks_one xsinx +cosx + c
looks_two xsinx -cosx +c
looks_3 xcosx +sinx + c
looks_4 xcosx - sinx + c
Option looks_one xsinx +cosx + c
Solution :
∫ x cosx dx
Integrate By parts
x sinx -∫sinx dx
xsinx +cosx + c
∫ x cosx dx
Integrate By parts
x sinx -∫sinx dx
xsinx +cosx + c
Question no. 38
What is ∫ xcos2x dx equal to ?
looks_one (1/4)x2 -(1/4)xsin2x -(1/8)cos2x + c
looks_two (1/4)x2 +(1/4)xsin2x +(1/8)cos2x+ c
looks_3 (1/4)x2 -(1/4)xsin2x +(1/8)cos2x+ c
looks_4 (1/4)x2 +(1/4)xsin2x -(1/8)cos2x + c
option looks_two (1/4)x2 +(1/4)xsin2x +(1/8)cos2x+ c
Solution :


Question no. 39
∫ sin(logx) + cos(logx) dx =
looks_one xcos(logx) + c
looks_two sin(logx) + c
looks_3 cos(logx) + c
looks_4 xsin(logx) + c
Option looks_4 xsin(logx) + c
Solution :
∫ sin(logx) + cos(logx) dx
log x = t ⇒ x = et
Differentiate w.r.t s
dx = et dt
∫ sin(logx) + cos(logx) dx
etsint - ∫etcost dt + ∫etcost dt
etsint + c
xsin(logx) + c
∫ sin(logx) + cos(logx) dx
log x = t ⇒ x = et
Differentiate w.r.t s
dx = et dt
∫ sin(logx) + cos(logx) dx
etsint - ∫etcost dt + ∫etcost dt
etsint + c
xsin(logx) + c
Question no. 40
What is ∫ logx/x3 dx equal to ?
looks_one (1/4x2)(2logx - 1) +c
looks_two -(1/4x2)(2logx + 1) +c
looks_3 (1/4x2)(2logx + 1) +c
looks_4 none of these
option looks_two -(1/4x2)(2logx + 1) +c
Solution :
Question no. 41
What is ∫ xnlogx dx equal to ?
looks_one (1/n+1)xn+1{logx + 1/(n+1) } + c
looks_two (1/n+1)xn+1{logx + 2/(n+1) } + c
looks_3 (1/n+1)xn+1{2logx - 1/(n+1) } + c
looks_4 (1/n+1)xn+1{logx - 1/(n+1) } + c
option looks_4 (1/n+1)xn+1{logx - 1/(n+1) } + c
Solution :


Question no. 42
What is ∫ e2x+logx dx equal to ?
looks_one (1/4)(2x-1)e2x + c
looks_two (1/4)(2x+1)e2x + c
looks_3 (1/2)(2x+1)e2x + c
looks_4 (1/2)(2x-1)e2x + c
option looks_one (1/4)(2x-1)e2x + c
Solution :
∫ e2x+logx dx = ∫e2x .elogx dx
∫e2x.x dx
Integrate By parts
xe2x/2 - e2x/4 + c
∫ e2x+logx dx = ∫e2x .elogx dx
∫e2x.x dx
Integrate By parts
xe2x/2 - e2x/4 + c
Question no. 43
What is ∫ logx log(x+2) dx equal to ?
looks_one x(logx)2+ c
looks_two x(1+logx)2 + c
looks_3 x[1+(logx)2] + c
looks_4 none of these
option
very son 13
Question no. 44
What is ∫[ 1/logx - 1/(logx)2] dx equal to ?
looks_one 1/logx + c
looks_two x/logx + c
looks_3 x/(logx)2+ c
looks_4 none of these
option looks_two x/logx + c
Solution :


Question no. 45
What is ∫ logx/(1+logx)2 equal to ?
looks_one 1/(1+ logx) + c
looks_two x/(1+logx)2 + c
looks_3 x/(1+logx) +c
looks_4 1/(1+logx)2 + c
Option looks_3 x/(1+logx) +c
Solution :
∫ (logx)/(1+logx)2 dx
Let 1 + logx = t ⇒ x = et-1
(1/x)dx = dt
dx = xdt
∫ (logx)/(1+logx)2 dx
Let 1 + logx = t ⇒ x = et-1
(1/x)dx = dt
dx = xdt
Comments
Post a Comment