Trigonometry Test
There will be 25 questions and timing will be 2 hour.
1. In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm.
Determine:
(i) sin A, cos A
(ii) sin C, cos C
2. If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠ A = ∠ B.
3. If 3 cot A = 4, check whether (1 – tan2A)/(1 + tan2A) = cos2 A – sin2A or not.
4. In triangle PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
5. Show that :
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
6. Prove the identities:
(i) √[1 + sinA/1 – sinA] = sec A + tan A
(ii) (1 + tan2A/1 + cot2A) = (1 – tan A/1 – cot A)2 = tan2A
7. If sin θ + cos θ = √3, then prove that tan θ + cot θ = 1.
8. Prove that (sin A – 2 sin3A)/(2 cos3A – cos A) = tan A.
9. Prove that (1 – cos2 A) cosec2A = 1
10. Prove that (sec2θ − 1)(cosec2θ − 1) = 1
11. Prove that (1 – sin θ) / (1 + sin θ) = (sec θ – tan θ)2
12. Prove that tan2θ − sin2 θ = tan2 θ sin2 θ
13. Prove that : (1 + tan2 θ)(1 – sin θ)(1 + sin θ) = 1
14. Prove that cosec6 θ = cot6 θ + 3cot2 θ cosec2 θ + 1
15. If sin θ = 1/√2, find all other trigonometric ratios of angle θ.
Comments
Post a Comment