Triangle
Question no. 16
If cos2A + cos2C = sin2B , then ∆ABC is
looks_one equilateral
looks_two right angled triangle
looks_3 isosceles
looks_4 none of these
Option looks_two right angled triangle
Solution :
let B = 90o
A + C = 90o
cos2A = cos2(900 - C) = sin2C
cos2A + cos2C = sin2C + cos2C = 1
sin2B = sin290o = 1
Therefore , ∆ABC is right angled triangle
let B = 90o
A + C = 90o
cos2A = cos2(900 - C) = sin2C
cos2A + cos2C = sin2C + cos2C = 1
sin2B = sin290o = 1
Therefore , ∆ABC is right angled triangle
Question no. 17
If in a triangle ∆ABC , C = 60° , then
=
=
looks_one 1/(a+b+c)
looks_two 2/(a+b+c)
looks_3 3/(a+b+c)
looks_4 none of these
option looks_3 3/(a+b+c)
ver soon 2
Question no. 18
In ABC , if tanA/2 tanC/2 = 1/2 , then a,b, c are in
looks_one A.P.
looks_two G.P.
looks_3 H.P.
looks_4 none of these
Option looks_4 none of these
Solution :


Question no. 19
In triangle ABC , if a,b ,c are in AP, then the value of
=
=
looks_one 1
looks_two 2
looks_3 1/2
looks_4 -1
option looks_3 1/2
Solution :
a, b , c are in A.P. , therefore a+c = 2b
a, b , c are in A.P. , therefore a+c = 2b
Question no. 20
In ABC , if a = 3 , b= 4 , c= 5 then sin2B=
looks_one 4/5
looks_two 3/20
looks_3 24/25
looks_4 1/50
Option looks_3 24/25
Solution :
3,4,5 are the pythogoras tripets , therefore
sinB = 4/5
cosB = 3/5
sin2B = 2sinBcosB = 2*4*3/5*5 = 24/25
3,4,5 are the pythogoras tripets , therefore
sinB = 4/5
cosB = 3/5
sin2B = 2sinBcosB = 2*4*3/5*5 = 24/25
Question no. 21
If the length of the sides of a triangle be 7, 4√3 and √13 cm, then the smallest angle is
looks_one 15o
looks_two 30o
looks_3 45o
looks_4 60o
option looks_two 30o
Solution :
Smallest angle will be opposite to the smallest side , √13 is the smallest side
Smallest angle will be opposite to the smallest side , √13 is the smallest side
Question no. 22
In a ABC , if C = 30° , a = 47 cm and b = 94 cm, then the triangle is
looks_oneright angled triangle
looks_two right angled isosceles
looks_3 isosceles
looks_4 obtuse angled
option looks_4 obtuse angled
Solution :
C = 30o a = 47 , b = 94
C = 30o a = 47 , b = 94
Question no. 23
In ∆ABC , side b is equal to
looks_one ccosA +acosC
looks_two acosB + bcosA
looks_3 bcosC + ccosB
looks_4 none of these
option looks_one b = ccosA +acosC
Solution :
ccosA +acosC
ccosA +acosC
Question no. 24
In ABC , a2( cos2B - cos2C) + b2(cos2C- cos2A) + c2( cos2A - cos2B) =
looks_one 0
looks_two 1
looks_3 a2 + b2 + c2
looks_4 2(a2 + b2 + c2)
Option looks_one 0
Solution :
a2( cos2B - cos2C) + b2(cos2C- cos2A) + c2( cos2A - cos2B)
= (a2 - c2 )cos2B + (b2 - a2 )cos2C + (c2 - b2 )cos2A
= (a2 - c2 )( 1 -sin2B) + (b2 - a2 )(1 -sin2C) + (c2 - b2 )(1 -sin2A)
= (a2 - c2 + b2 - a2 + c2 - b2 ) - [(a2 - c2 )sin2B + (b2 - a2 )sin2C + (c2 - b2 )sin2A ]
= - [(a2 - c2 )sin2B + (b2 - a2 )sin2C + (c2 - b2 )sin2A ]
= - [(a2 - c2 )Kb2 + (b2 - a2 )Kc2 + (c2 - b2 )Ka2 ]
= - K[b2a2 - b2c2 + c2b2 - a2c2 + a2c2 - a2 b2 ]
= 0
a2( cos2B - cos2C) + b2(cos2C- cos2A) + c2( cos2A - cos2B)
= (a2 - c2 )cos2B + (b2 - a2 )cos2C + (c2 - b2 )cos2A
= (a2 - c2 )( 1 -sin2B) + (b2 - a2 )(1 -sin2C) + (c2 - b2 )(1 -sin2A)
= (a2 - c2 + b2 - a2 + c2 - b2 ) - [(a2 - c2 )sin2B + (b2 - a2 )sin2C + (c2 - b2 )sin2A ]
= - [(a2 - c2 )sin2B + (b2 - a2 )sin2C + (c2 - b2 )sin2A ]
= - [(a2 - c2 )Kb2 + (b2 - a2 )Kc2 + (c2 - b2 )Ka2 ]
= - K[b2a2 - b2c2 + c2b2 - a2c2 + a2c2 - a2 b2 ]
= 0
Question no. 25
In triangle ∆ABC,
=
=
looks_one (a-b)/(a-c)
looks_two (a+b)/(a+c)
looks_3 (a2-b2)/(a2-c2)
looks_4 (a2 + b2)/(a2 + c2)
Option looks_4 (a2 + b2)/(a2 + c2)
Solution :
Question no. 26
In ∆ABC ,
=
=
looks_one (b-c)/a
looks_two (b+c)/a
looks_3 a/(b+c)
looks_4 a/(b-c)
Option looks_two (b+c)/a
Solution :


Question no. 27
In ∆ABC ,( b2- c2)cotA + (c2- a2)cotB + (a2- b2)cotC =
looks_one 0
looks_two 2(a2 + b2 + c2)
looks_3 a2 + b2 + c2
looks_4 1/2abc
Option looks_one 0
Solution :
Question no. 28
If in ∆ABC , 2b2= a2+ c2 , then
=
=
looks_one
looks_two
looks_3
looks_4
Option looks_4

Solution :


Question no. 29
If the angles of a triangle are in the ratio 1:2:3 , then their corresponding sides are in the ratio
looks_one 1:2:3
looks_two 1:√3 :2
looks_3 √2 : √3 : 3
looks_4 1: √3 : 3
Option looks_two 1:√3 :2
Solution :
∠A = x
∠B = 2x
∠C = 3x
x + 2x + 3x = 180o
x = 300
∠A = 300 , ∠B = 600 , ∠C = 900
a = λsin300 = λ/2
b = λsin600 = √3λ/2
c = λsin900 = λ
a : b : c = λ/2 : √3λ/2 : λ
a : b : c = 1:√3 :2
∠A = x
∠B = 2x
∠C = 3x
x + 2x + 3x = 180o
x = 300
∠A = 300 , ∠B = 600 , ∠C = 900
a = λsin300 = λ/2
b = λsin600 = √3λ/2
c = λsin900 = λ
a : b : c = λ/2 : √3λ/2 : λ
a : b : c = 1:√3 :2
Question no. 30
In a triangle ABC , b= √3 cm , c= 1 cm , ∠A= 30° , what is the value of a?
looks_one 2
looks_two 1
looks_3 1/2
looks_4 none of these
Option looks_two 1
Solution :
b= √3 cm
c= 1 cm
∠A= 30°
b= √3 cm
c= 1 cm
∠A= 30°
Comments
Post a Comment