
Vector
Question no. 1
For any vector a and b , (a ✕ b)2
looks_one a2 - b2
looks_two a2 + b2
looks_3 a2b2 -(a.b)2
looks_4 none of these
Option looks_3 a2b2 -(a.b)2
Solution :
(a ✕ b) = |a||b|sinθn
(a ✕ b)2 = |a|2|b|2sin2θ
= |a|2|b|2( 1 - cos2θ)
= |a|2|b|2 - |a|2|b|2cos2θ
= |a|2|b|2 -(a.b)2
(a ✕ b) = |a||b|sinθn
(a ✕ b)2 = |a|2|b|2sin2θ
= |a|2|b|2( 1 - cos2θ)
= |a|2|b|2 - |a|2|b|2cos2θ
= |a|2|b|2 -(a.b)2
Question no. 2
A unit vector prependicular to 3i+ 2j -k and 12i+ 5j -5k , is
looks_one (5i- 3j -9k)/√115
looks_two (5i+ 3j -9k)/√115
looks_3 (-5i+ 3j -9k)/√115
looks_4 (5i+ 3j +9k)/√115
option looks_3 (-5i+ 3j -9k)/√115
Solution :


Question no. 3
For any vector a and b ,if a ✕ b=0 , then
looks_one a=0
looks_two b=0
looks_3 not parallel
looks_4 none of these
option looks_4 none of these
They (non-zero) vector must be parallel
Question no. 4
The system of vectors i , j, k is
looks_one orthogonal
looks_two coplanar
looks_3 collinear
looks_4 none of these
option looks_one orthogonal
i , j, k are mutually prependicular to each other , therefore they are orthogonal.
Question no. 5
If | a |= 3 , | b |= 4 and | a + b |=5 , then | a - b | =
looks_one 6
looks_two 5
looks_3 4
looks_4 3
option looks_two 5
Solution :
| a + b |2 = |a|2 + |b|2 + 2|a||b|cosθ
25 = 9 + 16 + 2|a||b|cosθ ⇒ a.b = 0
| a - b | = |a|2 + |b|2 - 2|a||b|cosθ = 16 + 9 + 0 = 25
| a - b | = 5
| a + b |2 = |a|2 + |b|2 + 2|a||b|cosθ
25 = 9 + 16 + 2|a||b|cosθ ⇒ a.b = 0
| a - b | = |a|2 + |b|2 - 2|a||b|cosθ = 16 + 9 + 0 = 25
| a - b | = 5
Question no. 6
If a , b , c are mutually perpendicular unit vectors , then |a + b + c| =
looks_one 3
looks_two 0
looks_3 1
looks_4 √3
option looks_4 √3
Solution :
a , b , c are mutually perpendicular unit vectors
a.b = b.c = a.c = 0
|a + b + c|2 = |a|2 + |b|2 + |c|2 + 2a.b + c.a + b.c
|a + b + c|2 = 1+ 1 + 1
|a + b + c| = √3
a , b , c are mutually perpendicular unit vectors
a.b = b.c = a.c = 0
|a + b + c|2 = |a|2 + |b|2 + |c|2 + 2a.b + c.a + b.c
|a + b + c|2 = 1+ 1 + 1
|a + b + c| = √3
Question no. 7
If | a |= 3 , | b |= 1 , | c |= 4 and a + b + c=0, then a.b + c.a + b.c
looks_one -13
looks_two 13
looks_3 10
looks_4 -10
option looks_one -13
Solution :
| a |= 3
| b |= 1
| c |= 4
a + b + c = 0
(a + b + c)2 = |a|2 + |b|2 + |c|2 + 2a.b + c.a + b.c = 0
9 + 1 + 16 + 2(a.b + c.a + b.c) = 0
a.b + c.a + b.c = -26/2 = -13
| a |= 3
| b |= 1
| c |= 4
a + b + c = 0
(a + b + c)2 = |a|2 + |b|2 + |c|2 + 2a.b + c.a + b.c = 0
9 + 1 + 16 + 2(a.b + c.a + b.c) = 0
a.b + c.a + b.c = -26/2 = -13
Question no. 8
(r.i)2 + (r.j)2 + (r.k)2 =
looks_one 3r2
looks_two r2
looks_3 0
looks_4 none of these
option looks_two r2
Solution :
r = xi + yj + zk
r.i = x
r.j = y
r.k = z
(r.i)2 + (r.j)2 + (r.k)2 = x2 + y2 + z2 = r2
r = xi + yj + zk
r.i = x
r.j = y
r.k = z
(r.i)2 + (r.j)2 + (r.k)2 = x2 + y2 + z2 = r2
Question no. 9
If | a |= 3 , | b |= 4 and the angle between a and b be 120o , then |4a + 3b|
looks_one 25
looks_two 12
looks_3 7
looks_4 13
option looks_two 12
Solution :
|4a + 3b|2 = 16|a|2 + 9| b |2 +24a.b
=16|a|2 + 9| b |2 +24|a||b|cos120o
= 16.9 + 9.16 + 24.3.4.cos120o
= 288 - 144 = 144
|4a + 3b|2 = 144
|4a + 3b| = 12
|4a + 3b|2 = 16|a|2 + 9| b |2 +24a.b
=16|a|2 + 9| b |2 +24|a||b|cos120o
= 16.9 + 9.16 + 24.3.4.cos120o
= 288 - 144 = 144
|4a + 3b|2 = 144
|4a + 3b| = 12
Question no. 10
If θ be the angle between a and b and |a ✕ b| = a . b then, θ=
looks_one 180o
looks_two 90o
looks_3 45o
looks_4 0o
option looks_3 45o
Solution :
|a ✕ b| = a . b
|a||b|sinθ = |a||b|cosθ
sinθ = cosθ
θ = 45o
|a ✕ b| = a . b
|a||b|sinθ = |a||b|cosθ
sinθ = cosθ
θ = 45o
Question no. 11
If |a| + |b|= |c| and a + b = c , then the angle between a and
b is
looks_one 90o
looks_two 180o
looks_3 0o
looks_4 none of these
option looks_3 0o
Solution :
( |a| + |b| )2= |c|2
|a|2 + |b|2 + 2|a||b| = |c|2
a + b = c
|a|2 + |b|2 + 2a.b = |c|2
2|a||b| = 2a.b
= 2|a||b|cosθ
cosθ = 1
θ = 0o
( |a| + |b| )2= |c|2
|a|2 + |b|2 + 2|a||b| = |c|2
a + b = c
|a|2 + |b|2 + 2a.b = |c|2
2|a||b| = 2a.b
= 2|a||b|cosθ
cosθ = 1
θ = 0o
Question no. 12
Let α , β , γ be distinct real numbers. The points with position vectors αi +βj +γk , γi +αj +βk , βi +γj +αk
looks_one collinear
looks_two form an equilateral triangle
looks_3 form an scalene triangle
looks_4 form an right angled triangle
option looks_two
Solution :
OA = αi +βj +γk
OB = γi +αj +βk
OC = βi +γj +αk
Side (AB) = OB - OA = (γ - α)i + (α - β)j +(β - γ )k
Side (BC) = OC - OB = (β- γ )i + (γ - α )j + (α - β)k
Side (AC) = OC - OA = (β - α )i + (γ - β )j +( α - γ )k
|AB|= |AC| = |BC|
Equilateral triangle
OA = αi +βj +γk
OB = γi +αj +βk
OC = βi +γj +αk
Side (AB) = OB - OA = (γ - α)i + (α - β)j +(β - γ )k
Side (BC) = OC - OB = (β- γ )i + (γ - α )j + (α - β)k
Side (AC) = OC - OA = (β - α )i + (γ - β )j +( α - γ )k
|AB|= |AC| = |BC|
Equilateral triangle
Question no. 13
Volume of parallelopiped whose edges are 2i - 3j + 4k , i + 2j - 2k and 3i - j + k
looks_one 5 cubic unit
looks_two 6 cubic unit
looks_3 7 cubic unit
looks_4 8 cubic unit
option looks_3 7 cubic unit
Solution :
Question no. 14
If vectors 2i - 3j + 4k , i + 2j - k and xi - j + 2k are colpanar , then x=
looks_one 8/5
looks_two 5/8
looks_3 0
looks_4 1
option looks_one 8/5
solution :


Question no. 15
If a.i = 4, then (a ✕ j).(2j - 3k)=
looks_one 12
looks_two 2
looks_3 0
looks_4 -12
option looks_4 -12
Solution :


Comments
Post a Comment