
Inverse Trigonometry
Question no. 16
what is
equal to ?
equal to ?
looks_one 0
looks_two 2
looks_3 1
looks_4 1/2
Option looks_3 1
Solution :


Question no. 17
If sin-1(1) +sin-1(4/5)=sin-1(x) then what is x equal to ?
looks_one 3/5
looks_two 4/5
looks_3 1
looks_4 0
Option looks_one 3/5
Solution :


Question no. 18
tan-1(1+x) +tan-1(1-x)=π/2 is satisfied by
looks_one x=1
looks_two x=-1
looks_3 x=0
looks_4 x=1/2
Option looks_3 x=0
Solution :


Question no. 19
If
, where x=
looks_one 1/√2
looks_two -1/√2
looks_3 ∓ √(5/2)
looks_4 ∓ 1/2
Option looks_4 ∓ 1/2
Solution :


Question no. 20
tan-11 + tan-12 + tan-13=
looks_one π/2
looks_two π
looks_3 π/4
looks_4 none of these
Option looks_two π
Solution :
⇒ tan-11 + tan-12 + tan-13
⇒ tan-11 + + tan-13 + tan-12
⇒ tan-1(1+3)/(1-3) + tan-12
⇒ tan-1(-2) + tan-12
⇒ π -tan-12 + tan-12 = π
⇒ tan-11 + tan-12 + tan-13
⇒ tan-11 + + tan-13 + tan-12
⇒ tan-1(1+3)/(1-3) + tan-12
⇒ tan-1(-2) + tan-12
⇒ π -tan-12 + tan-12 = π
Question no. 21
cos-1x + cos-1y + cos-1z= π , then
looks_one x2+y2 + z2 +xyz = 0
looks_two x2+y2 + z2 +2xyz = 0
looks_3 x2+y2 + z2 +xyz = 1
looks_4 x2+y2 + z2 +2xyz = 1
Option looks_4 x2+y2 + z2 +2xyz = 1
Solution :


Question no. 22
If 2tan-1(1/3) + tan-1(1/2) =
looks_one 90o
looks_two 60o
looks_3 45o
looks_4 tan-12
Option looks_3 45o
Solution :
Question no. 23
sin-1x + sin-1(1/x) + cos-1x +cos-1(1/x)=
looks_one π
looks_two π/2
looks_3 3π/2
looks_4 none of these
Option looks_one π
Solution :
⇒ sin-1x + sin-1(1/x) + cos-1x +cos-1(1/x)
⇒ (sin-1x + cos-1x) + (sin-1(1/x) + cos-1(1/x))
⇒ π/2 + π/2 = π
⇒ sin-1x + sin-1(1/x) + cos-1x +cos-1(1/x)
⇒ (sin-1x + cos-1x) + (sin-1(1/x) + cos-1(1/x))
⇒ π/2 + π/2 = π
Question no. 24
tan-1x + tan-1y + tan-1z =π ,then
looks_one x+y+z -xyz=0
looks_two x+y+z +xyz=0
looks_3 xy+yz+xz+1=0
looks_4 xy+yz+xz-1=0
Option looks_one x+y+z -xyz=0
Solution :


Question no. 25
If sin(cot-1(x+1))=cos(tan-1x), then x=
looks_one -1/2
looks_two 1/2
looks_3 0
looks_4 9/4
Option looks_one -1/2
Solution :


Question no. 26
If u= cot-1√tanθ -tan-1√tanθ , then
=
=
looks_one √tanθ
looks_two √cotθ
looks_3 cotθ
looks_4 tanθ
Option looks_one √tanθ
Solution :
u= cot-1√tanθ -tan-1√tanθ
u= cot-1√tanθ -tan-1√tanθ
Question no. 27
If tan-1(1/4) +tan-1(2/9) is equal
looks_one 0.5cos-1(3/5)
looks_two 0.5sin-1(3/5)
looks_3 0.5tan-1(3/5)
looks_4 tan-1(1/2)
Option looks_4 tan-1(1/2)
Solution :


Question no. 28
If cot-1√(cosβ) -tan-1√(cosβ)= x , then the value of sinx is
looks_one tan2(β/2)
looks_two cot2(β/2)
looks_3 tanβ
looks_4 cot(β /2)
Option looks_one tan2(β/2)
Solution :
cot-1√(cosβ) -tan-1√(cosβ)= x
cot-1√(cosβ) -tan-1√(cosβ)= x
Question no. 29
The trigonometric equation sin-1x = 2sin-1a has a solution for
looks_one all values of a
looks_two |a| 1/√2
looks_3|a| ≥ 1/√2
looks_4 -1/√2< a < 1/√2
Option looks_4 -1/√2< a < 1/√2
Solution :


Question no. 30
If cos-1x -cos-1(y/2)=α , then 4x2 -4xycosα +y2 is
looks_one 4
looks_two 4sin2α
looks_3 -4sin2α
looks_4 2sin2α
Option looks_two 4sin2α
Solution :


Comments
Post a Comment